Bifurcation of osteoclasts and dendritic cells from common progenitors.

نویسندگان

  • T Miyamoto
  • O Ohneda
  • F Arai
  • K Iwamoto
  • S Okada
  • K Takagi
  • D M Anderson
  • T Suda
چکیده

Osteoclasts and dendritic cells are derived from monocyte/macrophage precursor cells; however, how their lineage commitment is regulated is unknown. This study investigated the differentiation pathways of osteoclasts and dendritic cells from common precursor cells at the single-cell level. Osteoclastogenesis induced by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappaB ligand (RANKL) or tumor necrosis factor-alpha (TNF-alpha) is completely inhibited by addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 at early stages of differentiation. GM-CSF-treated cells express both c-Fms and RANK and also low levels of CD11c and DEC205, which are detected on dendritic cells. Addition of GM-CSF also reduces expression of both c-Fos and Fra-1, which is an important event for inhibition of osteoclastogenesis. Overexpression of c-Fos by retroviral infection or induction in transgenic mice can rescue a failure in osteoclast differentiation even in the presence of GM-CSF. By contrast, differentiation into dendritic cells is inhibited by M-CSF, indicating that M-CSF and GM-CSF reciprocally regulate the differentiation of both lineages. Dendritic cell maturation is also inhibited when c-Fos is expressed at an early stage of differentiation. Taken together, these findings suggest that c-Fos is a key mediator of the lineage commitment between osteoclasts and dendritic cells. The lineage determination of osteoclast progenitors seen following GM-CSF treatment functions through the regulation of c-Fos expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Dendritic Cell-based Immunotherapeutic Vaccines for Acute Myeloid Leukemia (AML)

Acute myeloid leukemia (AML) is a type of poor prognosis hematological malignancies characterized by heterogeneous clonal expansion of myeloid progenitors. Leukemic stem cells are thought to form the majority of a cell population in minimal residual diseases (MRDs) which are resistant to current chemotherapeutic regimens and mediate disease relapse. Current therapeutic vaccine strategies have d...

متن کامل

Regulators of osteoclast differentiation and cell-cell fusion.

Osteoclasts are multinuclear giant cells derived from osteoclast/macrophage/dendritic cell common progenitor cells. The most characteristic feature of osteoclasts is multinucleation resulting from cell-cell fusion of mononuclear osteoclasts. Osteoclast cell-cell fusion is considered essential for re-organization of the cytoskeleton, such as the actin-ring and ruffled boa...

متن کامل

Activated invariant NKT cells regulate osteoclast development and function.

Invariant NKT (iNKT) cells modulate innate and adaptive immune responses through activation of myeloid dendritic cells and macrophages and via enhanced clonogenicity, differentiation, and egress of their shared myeloid progenitors. Because these same progenitors give rise to osteoclasts (OCs), which also mediate the egress of hematopoietic progenitors and orchestrate bone remodeling, we hypothe...

متن کامل

Tetracyclines convert the osteoclastic-differentiation pathway of progenitor cells to produce dendritic cell-like cells.

Tetracyclines, such as doxycycline and minocycline, are used to suppress the growth of bacteria in patients with inflammatory diseases. Tetracyclines have been shown to prevent bone loss, but the mechanism involved is unknown. Osteoclasts and dendritic cells (DCs) are derived from common progenitors, such as bone marrow-derived macrophages (BMMs). In this article, we show that tetracyclines con...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 98 8  شماره 

صفحات  -

تاریخ انتشار 2001